Integrin-mediated cell adhesion to type I collagen fibrils.
نویسندگان
چکیده
In the integrin family, the collagen receptors form a structurally and functionally distinct subgroup. Two members of this subgroup, alpha(1)beta(1) and alpha(2)beta(1) integrins, are known to bind to monomeric form of type I collagen. However, in tissues type I collagen monomers are organized into large fibrils immediately after they are released from cells. Here, we studied collagen fibril recognition by integrins. By an immunoelectron microscopy method we showed that integrin alpha(2)I domain is able to bind to classical D-banded type I collagen fibrils. However, according to the solid phase binding assay, the collagen fibril formation appeared to reduce integrin alpha(1)I and alpha(2)I domain avidity to collagen and to lower the number of putative alphaI domain binding sites on it. Respectively, cellular alpha(1)beta(1) integrin was able to mediate cell spreading significantly better on monomeric than on fibrillar type I collagen matrix, whereas alpha(2)beta(1) integrin appeared still to facilitate both cell spreading on fibrillar type I collagen matrix and also the contraction of fibrillar type I collagen gel. Additionally, alpha(2)beta(1) integrin promoted the integrin-mediated formation of long cellular projections typically induced by fibrillar collagen. Thus, these findings suggest that alpha(2)beta(1) integrin is a functional cellular receptor for type I collagen fibrils, whereas alpha(1)beta(1) integrin may only effectively bind type I collagen monomers. Furthermore, when the effect of soluble alphaI domains on type I collagen fibril formation was tested in vitro, the observations suggest that integrin type collagen receptors might guide or even promote pericellular collagen fibrillogenesis.
منابع مشابه
Retinal pigment epithelium cell alignment on nanostructured collagen matrices.
We investigated attachment and migration of human retinal pigment epithelial cells (primary, SV40-transfected and ARPE-19) on nanoscopically defined, two-dimensional matrices composed of parallel-aligned collagen type I fibrils. These matrices were used non-cross-linked (native) or after riboflavin/UV-A cross-linking to study cell attachment and migration by time-lapse video microscopy. Express...
متن کاملEmbryonic chicken fibroblast collagen binding proteins: distribution, role in substratum adhesion, and relationship to integrins.
Collagen binding proteins (CBP) are hydrophobic, cell surface polypeptides, isolated by collagen affinity chromatography. Antibodies to CBPs inhibit the attachment of embryonic chicken heart fibroblasts to native type I collagen fibrils in a dose-dependent manner. The CBP antibodies also induce rounding and detachment of cells adherent to a planar substratum. This process of antibody-mediated s...
متن کاملThe role of type V collagen fibril as an ECM that induces the motility of glomerular endothelial cells.
Although type V collagen (Col V) is present in developing and mature connective tissues of glomeruli, its primary function has not been elucidated yet. The purpose of this study was to elucidate the role of Col V fibrils in glomerular cells. We isolated primary cells from porcine kidney and cultured them on Col V fibrils reconstructed from purified Col V molecules extracted from porcine cornea....
متن کاملRab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملInfluence of fibrillar collagen structure on the mechanisms of platelet thrombus formation under flow.
We have used real-time video microscopy to study the mechanisms of platelet adhesion to type I collagen fibrils of distinct structure exposed to flowing blood. Electron microscopy analysis by surface replication demonstrated morphological differences between acid-insoluble fibrils, displaying a regularly repeating striated pattern (banded collagen), and acid-soluble fibrils generated by pepsin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 30 شماره
صفحات -
تاریخ انتشار 2004